Benha University Faculty of Engineering at Shoubra Civil Engineering Department Third Year Civil, General

Final 1st Term Exam Date: 3 / 1 / 2018 Irrigation & Drainage Engineering CVG 325 Duration: 3 hours

• No. of Questions: 4

• Total Mark: 100 Marks

- Answer all the following questions.
- Illustrate your answers with sketches when necessary.
- The exam consists of 2 pages.

Question (1)

State True or False & Correct the False:

- 1) In semi-arid regions, the available rainfall is not sufficient for the plants' growth.
- 2) The total volume of water in the world is varying due to climate changes.
- **3)** Hygroscopic water is useful for the plant.
- 4) Capillary water is useful for the plant.
- 5) Excess water in the soil is the moisture above W.P.
- 6) Irrigation rotations increase the irrigation efficiency.
- 7) Two partial regulators are required for two-turn irrigation rotation.
- 8) Sharaki is not suitable for two-turn irrigation rotation.
- 9) Two-turn irrigation rotation must be used when cotton is cultivated.
- **10)** Every canal has to end into a drain.

Question (2)

(30 Marks)

A branch canal is 13 km long and serves an area of 13,000 feddans. The area is cultivated as: 40 % rice, 55 % sharaki (prepared for cultivating maize). The land level is (9.50) at Km 13.0.

ſ	Distributor	Location	Area Served	Land Levels for Distributor Canals at Km:			
	Canal		(Fed)	0.0	1.0	2.0	3.0
Ī	C 1	1.0, L	3,000	11.00	11.00	10.80	10.70
Ī	C 2	6.0, L	4,000	10.45	10.55	10.35	10.25
	C 3	9.0, L	4,000	10.15	10.00	9.85	9.70

1) Sketch a diagram for performing the suitable irrigation rotation?

2) Draw the synoptic diagram for the branch canal and its distributors for lift irrigation?

Water levels for the branch canal are: (10.65) at km 1.0, (10.25) at km 6.0, and (9.80) at km 9.0. 3) Calculate the discharges at different sections of the branch canal, (compensation ratio = 20% &

3) Calculate the discharges at different sections of the branch canal, (compensation ratio = 20% & F.W.D. = $50 \text{ m}^3/\text{Fed/day}$)?

4) Design the cross section of the branch canal, $(Q = 4.53 \text{ m}^3/\text{s}, i = 10 \text{ cm/km}, Z = 1 \text{ \& } b = 2 \text{ y})?$

5) Discuss the velocity at the designed section of the branch canal ($Q = 4.53 \text{ m}^3/\text{s}$)?

<u>Question ()</u> (Marks)

Examiners Board: Dr. Alaa El-Hazek, Dr. Neveen Badawy

(20 Marks)

A Model Answer

<u>Final 1st Term Exam</u>

<u>3 / 1 / 2018</u>

Que	<u>stion (1)</u>	<u>(20 Marks)</u>		
No	The Statement	T / F	Correction	
1	In semi-arid regions, the available rainfall is not sufficient for the	Т		
	plants' growth.			
2	The total volume of water in the world is <u>varying</u> due to	F	constant	
	climate changes.			
3	Hygroscopic water is <u>useful</u> for the plant.	F	not useful	
4	Capillary water is useful for the plant.	Т		
5	Excess water in the soil is the moisture above W.P.	F	F.C.	
6	Irrigation rotations increase the irrigation efficiency.	Т		
7	Two partial regulators are required for two-turn irrigation	F	One	
	rotation.			
8	Sharaki is not suitable for two-turn irrigation rotation.	F	suitable	
9	Two-turn irrigation rotation must be used when <u>cotton</u> is	F	rice	
	cultivated.			
10	Every canal has to end into a drain.	Т		

Question (2)

1. <u>A diagram for performing the two - turn irrigation rotation:</u>

(30 Marks)

2. <u>Synoptic diagram for the branch canal and its distributors for lift irrigation:</u>

3. *The area served for design at the different sections of the branch canal:*

Sec.	Location,	Area Served, Fed		AS + Comp., Fed		AS _{design}	Discharge, m ³ /s
	Km	Turn, A	Turn, B	A+0.2B	B+0.2A	Fed	$Q = AS_{Design} * (50*1.15)$
							24*60*60
1	1.0	7,000	<u>6,000</u>	<u>8,200</u>	7,400	8,200	<u>5.46</u>
		4,000	6,000	5,200	6,800	6,800	4.53
2	6.0	4,000	<u>6,000</u>	<u>5,200</u>	<u>6,800</u>	<u>6,800</u>	<u>4.53</u>
			6,000	1,200	6,000	6,000	3.99
3	9.0		<u>6,000</u>	1,200	6,000	6,000	<u>3.99</u>
			2,000	400	2,000	2,000	1.33

4. *Design the cross section of the branch canal:*

$$Q = 4.53 \text{ m}^{3}/\text{sec}$$
Trapezoidal section, $z = 1$ $\therefore z:1 = 1:1$

$$A = b y + [2 * (1/2) * y * y] = b y + y^{2}$$

$$\& P = b + 2 (y + y) = b + 2.83 y$$

$$b = 2 y \qquad \therefore A = 2 y^{2} + y^{2} = 3 y^{2}$$

$$\& P = 2 y + 2.83 y = 4.83 y$$

$$\therefore R = \frac{A}{P} = \frac{3 y^{2}}{4.83 y} = 0.62 y$$

$$Q = A * v = (1/n) * R^{3/2} * S^{1/2} * A$$

$$S = i = 10 / 10^{-5} \qquad \& 1 / n = 40$$

$$4.53 = 40^{\circ}(0.62)^{2/3} * y^{2/3} * (10^{\circ}10^{-5})^{1/2} * 3 y^{2}$$

$$\therefore y^{8/3} = 5.193 \qquad \therefore y = 1.85 m \qquad \therefore b = 3.71 m$$
Take $b_{m} = 4 m$

$$A calculated = A_{m}$$

$$\therefore b y + y = b_{m} y_{m} + y_{m}$$

$$(3.71^{\circ}1.85) + (1.85)^{2} = 4 y_{m} + y_{m}^{2}$$

$$y_{m}^{2} + 4 y_{m} - 10.29 = 0$$

$$y = -b \pm [(b)^{2} - (4^{*}a^{*}c)]^{1/2}$$

$$\therefore y_{m} = -4 \pm [(4)^{2} - (4^{*}1^{*} - 10.29)]^{1/2}$$

$$\therefore y_{m} = 1.78 m$$

5. <u>Velocity at the designed cross section of the branch canal:</u> v = Q / A = 4.53 / 10.29 = 0.44 m/s 0.3 < v < 0.9The velocity is non-silting non-scouring

